Multivariate initial sequence estimators in Markov chain Monte Carlo

نویسندگان

  • Ning Dai
  • Galin L. Jones
چکیده

Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating expectations with respect to a given distribution. We consider estimating the covariance matrix of the asymptotic multivariate normal distribution of a vector of sample means. Geyer [9] developed a Monte Carlo error estimation method for estimating a univariate mean. We propose a novel multivariate version of Geyer’s method that provides an asymptotically valid estimator for the covariance matrix and results in stable Monte Carlo estimates. The finite sample properties of the proposed method are investigated via simulation experiments. ∗Research supported by the National Institutes of Health and the National Science Foundation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Consistency of Multivariate Spectral Variance Estimators in Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators for the asymptotic covariance matrix in the Markov chain central limit theorem and...

متن کامل

Monte Carlo error estimation for multivariate Markov chains

In this paper, the conservative Monte Carlo error estimation methods and theory developed in Geyer (1992a) are extended from univariate to multivariate Markov chain applications. A small simulation study demonstrates the feasibility of the proposed estimators.

متن کامل

Eecient Estimation of Invariant Distributions of Some Semiparametric Markov Chain Models

We characterize eecient estimators for the expectation of a function under the invariant distribution of a Markov chain and outline ways of constructing such estimators. We consider two models. The rst is described by a parametric family of constraints on the transition distribution; the second is the heteroscedastic nonlinear autoregressive model. The eecient estimator for the rst model adds a...

متن کامل

A Monte Carlo estimation of the entropy for Markov chains

Abstract. We introduce an estimate of the entropy Ept(log p ) of the marginal density p of a (eventually inhomogeneous) Markov chain at time t ≥ 1. This estimate is based on a double Monte Carlo integration over simulated i.i.d. copies of the Markov chain, whose transition density kernel is supposed to be known. The technique is extended to compute the external entropy Ept 1 (log p), where the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2017