Multivariate initial sequence estimators in Markov chain Monte Carlo
نویسندگان
چکیده
Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating expectations with respect to a given distribution. We consider estimating the covariance matrix of the asymptotic multivariate normal distribution of a vector of sample means. Geyer [9] developed a Monte Carlo error estimation method for estimating a univariate mean. We propose a novel multivariate version of Geyer’s method that provides an asymptotically valid estimator for the covariance matrix and results in stable Monte Carlo estimates. The finite sample properties of the proposed method are investigated via simulation experiments. ∗Research supported by the National Institutes of Health and the National Science Foundation.
منابع مشابه
Strong Consistency of Multivariate Spectral Variance Estimators in Markov Chain Monte Carlo
Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators for the asymptotic covariance matrix in the Markov chain central limit theorem and...
متن کاملMonte Carlo error estimation for multivariate Markov chains
In this paper, the conservative Monte Carlo error estimation methods and theory developed in Geyer (1992a) are extended from univariate to multivariate Markov chain applications. A small simulation study demonstrates the feasibility of the proposed estimators.
متن کاملEecient Estimation of Invariant Distributions of Some Semiparametric Markov Chain Models
We characterize eecient estimators for the expectation of a function under the invariant distribution of a Markov chain and outline ways of constructing such estimators. We consider two models. The rst is described by a parametric family of constraints on the transition distribution; the second is the heteroscedastic nonlinear autoregressive model. The eecient estimator for the rst model adds a...
متن کاملA Monte Carlo estimation of the entropy for Markov chains
Abstract. We introduce an estimate of the entropy Ept(log p ) of the marginal density p of a (eventually inhomogeneous) Markov chain at time t ≥ 1. This estimate is based on a double Monte Carlo integration over simulated i.i.d. copies of the Markov chain, whose transition density kernel is supposed to be known. The technique is extended to compute the external entropy Ept 1 (log p), where the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 159 شماره
صفحات -
تاریخ انتشار 2017